If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+2y-22=0
a = 2; b = 2; c = -22;
Δ = b2-4ac
Δ = 22-4·2·(-22)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-6\sqrt{5}}{2*2}=\frac{-2-6\sqrt{5}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+6\sqrt{5}}{2*2}=\frac{-2+6\sqrt{5}}{4} $
| (3x+10)20=180 | | 28x-36=-93 | | 75+x-13=180 | | 3.5m=10 | | 2^n=1/32^1/2 | | 3=4*5x-1 | | 4+0.8a=0.90a | | 4+4/5a=9/10a | | 4751-(26x+5830)=461-(38x+450) | | -(-123x-79)-(-48-82x)=-(-742) | | 63-18-144+3x=19-5x-4x+26 | | s-68=;5=79 | | 12,5x+19-7,5-20=x | | 18y^=30y | | 4x6=3(2x+5) | | 4x6=3(2x+5) | | 24k+39-13k+92+4k+19=0 | | 4x6=3(2x+5) | | 24k+39-13k+92+4k+19=0 | | 24k+39-13k+92+4k+19=0 | | s-68=11;5=79 | | 28x+11+15x-4-13x-7=155-35 | | 0.0004x=16 | | 7+x-2=22-8 | | Y=1/3*5^x | | x+x×0.25=1000 | | 3(4x-6)+4x=62 | | 2(h-3.5)=-11 | | y=285(1+0.75)^12 | | 4(3x-8)=28-3(x-3) | | 48=(6+2x)(4+2x) | | 8x+7=17-7x |